【近几年主要学术论文】: 【2025年】 [1] Hu Lu, Haotian Hong, Fuhao Shi, Shengli Wu, Lixin Duan. Deep contrastive graph clustering with information preservation, Pattern Recognition, Volume 172, Part C,2026,112575, https://doi.org/10.1016/j.patcog.2025.112575. [2] Fuhao Shi, Hu Lu(通信作者). Enhancing multi-view deep image clustering via contrastive learning for global and local consistency. Pattern Analysis and Applications 28 (4), 165, 2025 [3] XueCheng Hua, Ke Cheng, Gege Zhu, Hu Lu*(通信作者), YuanQuan Wang, ShiTong Wang, Local-Aware Residual Attention Vision Transformer for Visible-Infrared Person Re-Identification. ACM Transactions on Multimedia Computing, Communications, and Applications. 21(5) 1-24, 2025. [4] Fuhao Shi, Shaohua Wan, Shengli Wu, Hui Wei, Hu Lu* (通信作者). Deep contrastive coordinated multi-view consistency clustering. Machine Learning, doi : 10.1007/s10994-025-06735-y. (2025) 114:81 [5] Yunyao Cai, Hu Lu* (通信作者), Shengli Wu, Stefano Berretti, Shaohua Wan. DT-VNet: Deep Transformer-based VNet Framework for 3D Prostate MRI Segmentation. IEEE Journal of Biomedical and Health Informatics. 2025, doi: 10.1109/JBHI.2024.3486966. [6] Yuxin Li, Hu Lu*(通信作者), Tingting Qin, Juanjuan Tu, Shengli Wu. CM-DASN: Visible-Infrared Cross-Modality Person Re-Identification via Dynamic Attention Selection Network. Multimedia Systems, doi: 10.1007/s00530-025-01724-6, 2025.
【2024年】 [1] Xuecheng Hua, Ke Cheng, Hu Lu(通信作者), Juanjuan Tu, Yuanquan Wang, Shitong Wang. MSCMNet: Multi-scale Semantic Correlation Mining for Visible-Infrared Person Re-Identification, Pattern Recognition, 2024,111090, doi.org/10.1016/j.patcog.2024.111090. (中科院1区) [2] Yuhao Wang, Xuehu Liu, Pingping Zhang, Hu Lu, Zhengzheng Tu, Huchuan Lu, TOP-ReID: Multi-spectral Object Re-Identification with Token Permutation. Association for the Advancement of Artificial Intelligence, AAAI-2024, 20-27 February,2024. (CCF-A类) [3] Hu Lu, TingTing Jin,Hui Wei, Michele Nappi,Hu Li, ShaoHua Wan,Soft-orthogonal Constrained Dual-stream Encoder with Self-supervised Clustering Network for Brain Functional Connectivity Data. Expert Systems With Applications, 244, 122898, (2024). (中科院1区) [4] Ke Cheng, Qikai Geng, Shucheng Huang, Juanjuan Tu, Hu Lu*(通信作者): Learning shared features from specific and ambiguous descriptions for text-based person search. Multim. Syst. 30(2): 94 (2024). (Impact factor=3.9) [5] Hu Lu, Haotian Hong, Xia Geng: Deep Self-Supervised Attributed Graph Clustering for Social Network Analysis. Neural Process. Lett. 56(2): 130 (2024). (Impact factor=3.1)
【2023年】 [1] Hu, Lu, Xuezhang Zou, Pingping Zhang, Learning Progressive Modality-shared Transformers for Effective Visible-Infrared Person Re-identification. Association for the Advancement of Artificial Intelligence 2023, AAAI-2023. (CCF-A类) [2] Ziqiang He, Shaohua Wan, Marco Zappatore, Hu Lu*(通信作者). A Similarity Matrix Low-Rank Approximation and Inconsistency Separation Fusion Approach for Multi-View Clustering. IEEE Transactions on Artificial Intelligence. TAI. 2023, DOI: 10.1109/TAI.2023.3271964. [3] Yirui Wu, Lilai Zhang, Zonghua Gu, Hu Lu, Shaohua Wan. Edge-AI-Driven Framework with Efficient Mobile Network Design for Facial Expression Recognition. ACM Transactions on Embedded Computing Systems. 2023, DOI:10.1145/3587038. [4] Chao Chen, Hu Lu*(通信作者), Haotian Hong, Hai Wang, Shaohua Wan. Deep Graph Attention Convolution Autoencoder Clustering for Social Network Connection Analysis. TCE, IEEE Transactions on Consumer Electronics. 2023.
【2022年】 [1] Li, H., Wu Y., Hu, H., Lu, H., Lai, Y., Wan, S., Learning Group-Disentangled Representation for Interpretable Thoracic Pathologic Prediction. International Conference on Bioinformatics & Biomedicine 2022, BIBM-2022. (CCF-B类) [2] Ding, S., Wang, H., Lu, H., Nappi, M., & Wan, S. (2022). Two path gland segmentation algorithm of colon pathological image based on local semantic guidance. IEEE journal of biomedical and health informatics, (SCI检索,Impact factor: 7.021) [3] Chao Chen, Hu Lu*(通信作者), Hui Wei, Xia Geng. Deep Subspace Image Clustering Network with Selfexpression and Self-supervision [J]. Applied Intelligence. accepted, 2022, (SCI检索,Impact factor=5.086) [4] Hu Lu, Chao Chen, Hui Wei, Zhongchen Ma, Ke Jiang, Yingquan Wang. Improved Deep Convolutional Embedded Clustering with Re-selectable Sample Training [J]. Pattern Recognition. Volume 127, 2022, doi : 10.1016/j.patcog.2022.108611. (SCI检索,Impact factor=7.74)[source code] [5] Hu Lu*(通信作者), Tingting Jin. Dual-Stream Encoder Neural Networks with Spectral Constraint for Clustering Functional Brain Connectivity Data [J]. Neural Computing and Applications. 2022, doi : 10.1007/s00521-022-07122-7. (SCI检索,Impact factor=5.606)[source code] [6] Yingquan Wang, Ke Jiang, Hu Lu*(通信作者), Ziheng Xu, Gaojian Li, Chao Chen, Xia Geng. Encoder-Decoder Assisted Image Generation for Person re-identification[J]. Multimedia Tools and Applications. 2022, doi : 10.1007/s11042-022-11907-2. (SCI检索,Impact factor=2.757)
【2021年】 [1] Yingquan Wang, Pingping Zhang, Shang Gao, Xia Geng, Hu Lu*(通信作者), Dong Wang. Pyramid Spatial-Temporal Aggregation for Video-based Person Re-Identification. Proceedings of the IEEE International Conference on Computer Vision, v 2021-October, p12026-12035, Proceedings - 2021 International Conference on Computer Vision, ICCV 2021. (CCF-A类) [2] Hu Lu*(通信作者), Saixiong Liu, Hui Wei, Chao Chen, Xia Geng, Deep multi-kernel auto-encoder network for clustering brain functional connectivity data. Neural Networks. Volume 135, 2021, pp 148-157. DOI: 10.1016/j.neunet.2020.12.005. (SCI检索,Impact factor=8.05) [3] Thomas Martial Epalle*, Yuqing Song, Zhe Liu, Hu Lu. Multi-atlas Classification of Autism Spectrum Disorder with Hinge Loss Trained Deep Architectures: ABIDE I Results [J]. Applied Soft Computing. March 29, 2021. (SCI检索,Impact factor=6.725) [4] Hu Lu*(通信作者). Click-cut: A framework for interactive object selection [J]. Multimedia Tools and Applications. March 30, 2021. (SCI检索,Impact factor=2.757)
【欢迎新研究生的加入】 本实验室围绕着人工智能、机器学习、计算机视觉、机器视觉、LLM等领域开展基础研究、应用项目开发。欢迎对此感兴趣的同学加入。实验室要求:在研期间需完成2个点研究内容论文及毕业大论文达标(仅限论文+专利的学术积分达学校标准),原则上1篇SCI小论文录用(之前的毕业研究生都能达到,对愿意花点时间学习的学生来说不难);确保大论文按时按质外审、按时毕业。我们都可以合作,共同前进!
【欢迎本科生的加入】 本实验室也欢迎有科研想法、想发表SCI论文、能坚持的本科生来参加科学研究和项目训练(做事三分钟热度的同学请绕过),也可一起合作后续参加各项人工智能类竞赛及挑战赛。 欢迎有兴趣的同学可发邮箱-luhu@ujs.edu.cn、或微信-18952881128。 |