人才培养
 
 
研究生培养 当前位置: 学院首页 > 人才培养 > 研究生培养 > 导师信息 > 博士生导师 > 正文
 
导师信息  培养方案 |  学位管理 |  导师信息 |  工作站介绍 |
 
孙宏祥
发布日期:2023-05-31   浏览次数:
 

教师姓名:

孙宏祥

职务职称:

副院长、教授、博士生导师

所属系部:

物电学院物理系

研究方向:

声学、超材料、超表面、拓扑绝缘体、声场调控

联系电话:


电子邮箱:

jsdxshx@ujs.edu.cn

个人简介

学习经历:

2018/12-2019/12,新加坡南洋理工大学,访问学者

2014/12-2018/07,江苏大学,动力工程与热物理,博士后

2010/09-2013/09,南京大学,声学, 理学博士

2006/09-2009/06,江苏大学,光学工程, 工学硕士

2000/09-2004/07,南京师范大学, 物理学, 本科

工作经历:

2021/07-至今,江苏大学物理与电子工程学院,教授

2020/06-2021/06,江苏大学物理与电子工程学院,副教授

2015/07-2020/05,江苏大学理学院,副教授

2009/08-2015/06,江苏大学理学院,讲师

2004/07-2009/07,江苏大学理学院,助教

学术兼职:

中国声学学会教育分会委员,江苏省声学学会理事,担任 Phys. Rev. B, Phys. Rev. Applied, Phys. Rev. Research, Commun. Phys., Sci. Rep., Adv. Mater., Adv. Sci.,Adv. Optical Mater., Adv. Mater. Tech., Laser Photonics Rev., Appl. Phys. Lett, J. Appl. Phys., JASA, Appl. Phys. Express, Jpn. J. Appl. Phys., New J. Phys., J. Phys. D, Energy,Small,PIER, Smart Mater. Struct. Int. J. Mech. Sci., Mater. Res. Express, Chin. Phys. B,物理学报,声学学报等期刊评审人。

教研成果

教学研究课题:

江苏大学全英文授课留学本科生实验实践教学平台建设项目, 在研

教育部高等学校物理教学研究项目 (DWJZW201703hd), 结题

江苏大学教改课题 (2017JGYB060), 结题

主持在研及完成的项目:

[15] 国家自然科学基金面上项目 (12274183),在研

[14] 国家自然科学基金面上项目 (11774137),结题

[13] 国家自然科学基金青年项目 (11404147),结题

[12] 江苏省自然科学基金青年项目 (BK20140519),结题

[11] 声场声信息国家重点实验室开放课题 (SKLA202216),在研

[10] 声场声信息国家重点实验室开放课题 (SKLA202016),结题

[9] 声场声信息国家重点实验室开放课题 (SKLA201813),结题

[8] 声场声信息国家重点实验室开放课题 (SKLOA201607),结题

[7] 声场声信息国家重点实验室开放课题 (SKLOA201308),结题

[6] 声场声信息国家重点实验室开放课题 (SKLOA201109),结题

[5] 中国博士后基金面上项目 (2015M571672),结题

[4] 近代声学教育部重点实验室开放课题 (1510),结题

[3] 近代声学教育部重点实验室开放课题 (1304),结题

[2] 近代声学教育部重点实验室开放课题 (1105),结题

[1] 江苏省高校自然科学研究面上项目 (12KJB14003),结题

专著、译著

孙宏祥著, 黏弹性复合材料激光超声理论与技术,科学出版社,2017年1月.

学术论文:

Selected publications (#equal contribution; *corresponding author)

[13] Y. Meng#, S. X. Lin#, B. J. Shi#, B. Wei, L. Y. Yang, B. Yan, Z. X. Zhu, X. Xi, Y. Wang, Y. Ge, S. Q. Yuan, J. M. Chen, G. G. Liu, H. X. Sun*, H. S. Chen, Y. H. Yang* & Z. Gao*. Spinful topological phases in acoustic crystals with projective PT symmetry. Physical Review Letters, 2023, 130: 026101.

[12] L. Y. Yang#, Y. Wang#, Y. Meng, Z. X. Zhu, X. Xi, B. Yan, S. X. Lin, J. M. Chen, B. J. Shi, Y. Ge, S. Q. Yuan, H. S. Chen, H. X. Sun*, G. G. Liu*, Y. H. Yang* & Z. Gao*. Observation of Dirac hierarchy in three-dimensional acoustic topological insulators Physical Review Letters, 2022, 129: 125502. (Editors' Suggestion)

[11] Y. H. Yang#, Y. Ge#, R. J. Li#, X. Lin, D. Jia, Y. J. Guan, S. Q. Yuan, H. X. Sun*, Y. D. Chong* & B. L. Zhang*. Demonstration of negative refraction induced by synthetic gauge fields. Science Advance, 2021, 7: eabj2062.

[10] L. Zhang#, Y. H. Yang*#, Y. Ge#, Y. J. Guan, Q. L. Chen, Q. H. Yan, F. J. Chen, R. Xi, Y. Z. Li, D. Jia, S. Q. Yuan, H. X. Sun*, H. S. Chen* & B. L. Zhang*. Acoustic non-Hermitian skin effect from twisted winding topology. Nature Communications, 2021, 12: 6297.

[9] Q. Wang#, Y. Ge#, H. X. Sun, H. R. Xue, D. Jia, Y. J. Guan, S. Q. Yuan*, B. L. Zhang* & Y. D. Chong*. Vortex states in an acoustic Weyl crystal with a topological lattice defect. Nature Communications, 2021, 12: 3654.

[8] H. R. Xue#, D. Jia#, Y. Ge, Y. J. Guan, Q. Wang, S. Q. Yuan, H. X. Sun*, Y. D. Chong* & B. L. Zhang*. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator. Physical Review Letters, 2021, 127, 214301. (Editors' Suggestion)

[7] H. R. Xue#, Y. Ge#, H. X. Sun*, Q. Wang, D. Jia, Y. J. Guan, S. Q. Yuan, Y. D. Chong* & B. L. Zhang*. Observation of an acoustic octupole topological insulator. Nature Communications, 2020, 11: 2442. (ESI highly cited paper)

[6] G. G. Liu#, P. H. Zhou#, Y. H. Yang*, H. R. Xue, X. Ren, X. Lin, H. X. Sun, L. Bi, Y. D. Chong* & B. L. Zhang*, Observation of an unpaired photonic Dirac point. Nature Communications, 2020, 11: 1873.

[5] G. G. Liu, Y. H. Yang*, X. Ren, H. R. Xue, X. Lin, Y. H. Hu, H. X. Sun, B. Peng, P. H. Zhou*, Y. D. Chong* & B. L. Zhang*. Topological Anderson insulator in disordered photonic crystals. Physical Review Letters, 2020, 125: 133603. (Editors' Suggestion)

[4] Y. H. Yang#, H. X. Sun#, J. P. Xia, H. R. Xue, Z. Gao, Y. Ge, D. Jia, S. Q. Yuan, Y. D. Chong* & B. L. Zhang*. Topological triply degenerate point with double Fermi arcs. Nature Physics, 2019, 15: 645-649.

[3] Y. H. Yang#, J. P. Xia#, H. X. Sun*, Y. Ge, D. Jia, S. Q. Yuan, S. Y. Yang, Y. D. Chong* & B. L. Zhang*. Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal. Nature Communications, 2019, 10: 5185.

[2] Y. Y. Sun#, J. P. Xia#, H. X. Sun*, S. Q. Yuan, Y. Ge & X. J. Liu*. Dual-band Fano resonance of low-frequency sound based on artificial Mie resonances. Advanced Science, 2019, 6: 1901307.

[1] J. P. Xia#, D. Jia#, H. X. Sun*, S. Q. Yuan*, Y. Ge, Q. R. Si & X. J. Liu*. Programmable coding acoustic topological insulator. Advanced Materials, 2018, 30: 1805002.

Full publications

2023

[92] Y. Meng#, S. X. Lin#, B. J. Shi#, B. Wei, L. Y. Yang, B. Yan, Z. X. Zhu, X. Xi, Y. Wang, Y. Ge, S. Q. Yuan, J. M. Chen, G. G. Liu, H. X. Sun*, H. S. Chen, Y. H. Yang* & Z. Gao*. Spinful topological phases in acoustic crystals with projective PT symmetry. Physical Review Letters, 2023, 130: 026101.

[91] B. B. Wang, Y. Ge, S. Q. Yuan, D. Jia* & H. X. Sun*. Exceptional ring by Non-Hermitian sonic crystals. PIER, 2023, 176: 1-10.

[90] X. D. Feng, Y. Wang, L. J. Shi*, H. Y. Zou, Y. J. Lu, D. Jia, Y. Ge, Y. J. Guan, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Mode converter of vortex beams by phase-gradient acoustic metagratings Journal of Applied Physics, 2023, 133: 034502. (Editor's Pick)

2022

[89] L. Y. Yang#, Y. Wang#, Y. Meng, Z. X. Zhu, X. Xi, B. Yan, S. X. Lin, J. M. Chen, B. J. Shi, Y. Ge, S. Q. Yuan, H. S. Chen, H. X. Sun*, G. G. Liu*, Y. H. Yang* & Z. Gao*. Observation of Dirac hierarchy in three-dimensional acoustic topological insulators. Physical Review Letters, 2022, 129: 125502. (Editors' Suggestion)

[88] Y. J. Lu#, Y. Wang#, Y. Ge, S. Q. Yuan, D. Jia*, H. X. Sun* & X. J. Liu*. Multifunctional acoustic logic gates by valley sonic crystals. Applied Physics Letters, 2022, 121, 123506.

[87] B. B. Wang, D. Jia*, Y. Ge, S. Q. Yuan & H. X. Sun*. Acoustic suppressed topological refraction in valley sonic crystals. New Journal of Physics, 2022, 24: 113033.

[86] Z. X. Zhu#, Z. Gao#*, G. G. Liu#, Y. Ge, Y. Wang, X. Xi, B. Yan, F. J. Chen, P. P. Shum, H. X. Sun* & Y. H. Yang*. Observation of multiple rotons and multidirectional roton-like dispersion relations in acoustic metamaterials. New Journal of Physics, 2022, 24: 123019.

[85] Y. J. Guan#, Y.W. Xu, Y. Ge, H. X. Sun*, S. Q. Yuan* & X. J. Liu*. Low-frequency low-reflection bidirectional sound insulation tunnel with ultrathin lossy metasurfaces. Applied Sciences, 2022, 12: 3470.

[84] Y. W. Xu#, Y.J. Guan#, J. L. Yin, Y. Ge, H. X. Sun*, S. Q. Yuan* & X. J. Liu*. Low-frequency dual-band sound absorption by ultrathin planar wall embedded with multiple-cavity resonators. Frontiers in Physics, 2022, 10: 911711.

[83] J. P. Xia#, Y. Y. Sun#, Y. J. Guan#, Y. Wang, Y. J. Lu, H. G. Hu, Y. Ge, H. X. Sun*, S. Q. Yuan, Y. Lai*&X. J. Liu*. Broadband low-frequency sound absorption in open tunnels with deep sub-wavelength Mie resonators. Frontiers in Physics, 2022, 10: 1047892.

2021

[82] Y. H. Yang#, Y. Ge#, R. J. Li#, X. Lin, D. Jia, Y. J. Guan, S. Q. Yuan, H. X. Sun*, Y. D. Chong* & B. L. Zhang*. Demonstration of negative refraction induced by synthetic gauge fields. Science Advance, 2021, 7: eabj2062.

[81] L. Zhang#, Y. H. Yang*#, Y. Ge#, Y. J. Guan, Q. L. Chen, Q. H. Yan, F. J. Chen, R. Xi, Y. Z. Li, D. Jia, S. Q. Yuan, H. X. Sun*, H. S. Chen* & B. L. Zhang*. Acoustic non-Hermitian skin effect from twisted winding topology. Nature Communications, 2021, 12: 6297.

[80] Q. Wang#, Y. Ge#, H. X. Sun, H. R. Xue, D. Jia, Y. J. Guan, S. Q. Yuan*, B. L. Zhang* & Y. D. Chong*. Vortex states in an acoustic Weyl crystal with a topological lattice defect. Nature Communications, 2021, 12: 3654.

[79] H. R. Xue#, D. Jia#, Y. Ge, Y. J. Guan, Q. Wang, S. Q. Yuan, H. X. Sun*, Y. D. Chong* & B. L. Zhang*. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator. Physical Review Letters, 2021, 127: 214301. (Editors' Suggestion)

[78] D. Jia, Y. Ge, H. R. Xue, S. Q. Yuan, H. X. Sun*, Y. H. Yang*, X. J. Liu & B. L Zhang*. Topological refraction in dual-band valley sonic crystals. Physical Review B, 2021, 103: 144309.

[77] Y. J. Lu#, H. Y. Zou#, J. Qian#, Y. Wang, Y. Ge, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Multifunctional reflected lenses based on aperiodic acoustic metagratings. Applied Physics Letters, 2021, 119(17): 173501.

[76] D. Jia#, Y. Wang#, Y. Ge, S. Q. Yuan & H. X. Sun*. Tunable topological refractions in valley sonic crystals with triple valley Hall phase transitions. PIER, 2021, 172: 13-22. (Invited Paper)

[75] D. Jia, S. Gu, S. Jiang, Y. Ge, S. Q. Yuan & H. X. Sun*. Pseudospin-dependent acoustic topological insulator by sonic crystals with same hexagonal rods. Frontiers in Physics, 2021, 9: 762567.

[74] Y. J. Guan#, Y. Ge#, H. X. Sun*, S. Q. Yuan*, Y. Lai* & X. J. Liu*. Ultra-thin metasurface-based absorber of low-frequency sound with bandwidth optimization. Frontiers in Materials, 2021, 8: 764338.

[73] J. H. Chen#, J. Qian#, Y. J. Guan#, Y. Ge, S. Q. Yuan, H. X. Sun*, Y. Lai* & X. J. Liu*. Broadband bidirectional and multi-channel unidirectional acoustic insulation by mode-conversion phased units. Frontiers in Materials, 2021, 8: 766491.

[72] Y. Wang#, J. Qian#, J. P. Xia#, Y. Ge, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Acoustic Bessel vortex beam by quasi-three-dimensional reflected metasurfaces. Micromachines, 2021, 12: 1388.

[71] Y. J. Guan#, Y. Ge#, H. X. Sun*, S. Q. Yuan* & X. J. Liu*. Low-Frequency, open, sound-insulation barrier by two oppositely oriented Helmholtz resonators. Micromachines, 2021, 12: 1544.

[70] 贾鼎, 葛勇, 孙宏祥*,张淑仪*. 基于手性声子晶体的谷拓扑声输运. 声学学报,2021, 46(6): 1172-1177.

2020

[69] H. R. Xue#, Y. Ge#, H. X. Sun*, Q. Wang, D. Jia, Y. J. Guan, S. Q. Yuan, Y. D. Chong* & B. L. Zhang*. Observation of an acoustic octupole topological insulator. Nature Communications, 2020, 11: 2442. (ESI highly cited paper)

[68] G. G. Liu#, P. H. Zhou#, Y. H. Yang*, H. R. Xue, X. Ren, X. Lin, H. X. Sun, L. Bi, Y. D. Chong* & B. L. Zhang*, Observation of an unpaired photonic Dirac point. Nature Communications, 2020, 11: 1873.

[67] G. G. Liu, Y. H. Yang*, X. Ren, H. R. Xue, X. Lin, Y. H. Hu, H. X. Sun, B. Peng, P. H. Zhou*, Y. D. Chong* & B. L. Zhang*. Topological Anderson insulator in disordered photonic crystals. Physical Review Letters, 2020, 125: 133603. (Editors' Suggestion)

[66] J. Qian#, J. P. Xia#, H. X. Sun#*, Y. Wang, Y. Ge, S. Q. Yuan, Y. H. Yang*, X. J. Liu & B. L Zhang*. Aperiodic metagratings for high-performance multifunctional acoustic lenses. Advanced Materials Technologies, 2020, 5: 202000542.

[65] T. C. Zhang#, J. H. Chen#, J. Qian#, Y. Ge, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Observation of ultrabroadband acoustic focusing based on V-Shaped meta-atoms. Advanced Materials Technologies, 2020, 5: 1900956.

[64] J. Qian#, Y. Wang#, J. P. Xia#, Y. Ge, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Broadband integrative acoustic asymmetric focusing lens based on mode-conversion meta-atoms. Applied Physics Letters, 2020, 116: 223505.

[63] Y. J. Lu#, Y. Ge#, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Acoustic logic gates by a curved waveguide with ultrathin metasurfaces. Journal of Physics D: Applied Physics, 2020, 53: 015301.

2019

[62] Y. H. Yang#, H. X. Sun#, J. P. Xia, H. R. Xue, Z. Gao, Y. Ge, D. Jia, S. Q. Yuan, Y. D. Chong* & B. L. Zhang*. Topological triply degenerate point with double Fermi arcs. Nature Physics, 2019, 15: 645-649.

[61] Y. H. Yang#, J. P. Xia#, H. X. Sun*, Y. Ge, D. Jia, S. Q. Yuan, S. Y. Yang, Y. D. Chong* & B. L. Zhang*. Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal. Nature Communications, 2019, 10: 5185.

[60] Y. Y. Sun#, J. P. Xia#, H. X. Sun*, S. Q. Yuan, Y. Ge & X. J. Liu*. Dual-band Fano resonance of low-frequency sound based on artificial Mie resonances. Advanced Science, 2019, 6: 1901307.

[59] Y. Wang#, J. P. Xia#, H. X. Sun*, S. Q. Yuan, Y. Ge, Q. R. Si, Y. J. Guan & X. J. Liu*. Multifunctional asymmetric sound manipulations by a passive phased array prism. Physical Review Applied, 2019, 12: 024033.

[58] Y. Ge, H. X. Sun*, S. Q. Yuan & Y. Lai*. Switchable omnidirectional acoustic insulation through open window structures with ultrathin metasurfaces. Physical Review Materials, 2019, 3: 065203.

[57] J. Qian, H. X. Sun*, S. Q. Yuan & X. J. Liu*. Enhanced directional acoustic emission based on anisotropic metamaterials. Applied Physics Letters, 2019, 114: 013506.

[56] Y. Wang#, J. P. Xia#, H. X. Sun*, S. Q. Yuan & X. J. Liu*. Binary-phase acoustic passive logic gates. Scientific Reports, 2019, 9: 8355.

[55] J. Qian#, Y. Wang#, S. Q. Yuan, H. X. Sun* & X. J. Liu*. Reflected acoustic wavefront manipulation by an ultrathin metasurface based on three-dimensional generalized Snell’s law. Applied Physics Express, 2019, 12: 094001.

[54] D. Jia, H. X. Sun*, S. Q. Yuan, C. Zhang & X. J. Liu*. Pseudospin- dependent acoustic topological insulator by airborne sonic crystals with a triangular lattice. Applied Physics Express, 2019, 12: 044003.

[53] W. T. Gao#, J. P. Xia#, H. X. Sun*, S. Q. Yuan, Y. Ge & X. J. Liu*. Acoustic energy harvesting for low-frequency airborne sound based on compound Mie resonances. Applied Physics Express, 2019, 12: 044002.

[52] H. X. Sun*, A. R. Hou, J. Qian, Y. Ge*, S. Q. Yuan, Y. J. Guan, Q. R. Si & X. J. Liu*. Broadband acoustic converging and asymmetric converging based on thermoacoustic phased arrays. Journal of Applied Physics, 2019, 125: 024504.

[51] 贾鼎, 葛勇, 袁寿其,孙宏祥*. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68: 224301.

[50] 夏建平, 葛勇*, 孙宏祥, 袁寿其, 司乔瑞, 方欣, 张淑仪*,刘晓峻. 基于近零折射率材料的声非对称聚焦透镜. 声学学报, 2019, 44: 765-771.

2018

[49] J. P. Xia#, D. Jia#, H. X. Sun*, S. Q. Yuan*, Y. Ge, Q. R. Si & X. J. Liu*. Programmable coding acoustic topological insulator. Advanced Materials, 2018, 30: 1805002.

[48] J. P. Xia, X. T. Zhang, H. X. Sun*, S. Q. Yuan*, J. Qian & Y. Ge. Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces. Physical Review Applied, 2018, 10: 014016

[47] D. Jia, H. X. Sun*, J. P. Xia, S. Q. Yuan, X. J. Liu* & C. Zhang. Acoustic topological insulator by honeycomb sonic crystals with direct and indirect band gaps. New Journal of Physics, 2018, 20: 093027.

[46] Y. Ge, H. X. Sun*, S. Q. Yuan & Y. Lai*. Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms. Applied Physics Letters, 2018, 112: 243502.

[45] H. X. Sun#, J. H. Chen#, Y. Ge*, S. Q. Yuan & X. J. Liu*. Broadband and flexible acoustic focusing by metafiber bundles. Journal of Physics D: Applied Physics, 2018, 51: 245102.

[44] A. R. Hou#, W. T. Gao#, J. Qian#, H. X. Sun*, Y. Ge*, S. Q. Yuan, Q. R. Si & X. J. Liu. Thermoacoustic-reflected focusing lens based on acoustic Bessel-like beam with phase manipulation. Chinese Physics B, 2018, 27: 124301.

2017

[43] C. Y. Zuo#, J. P. Xia#, H. X. Sun*, Y. Ge, S. Q. Yuan & X. J. Liu*. Broadband acoustic logic gates in a circular waveguide with multiple ports. Applied Physics Letters, 2017, 111: 243501.

[42] J. P. Xia, H. X. Sun* & S. Q. Yuan*. Modulating sound with acoustic metafiber bundles. Scientific Reports, 2017, 7: 8151.

[41] C. Liu#, J. P. Xia#, H. X. Sun* & S. Q. Yuan*. Thermoacoustic focusing lens by symmetric Airy beams with phase manipulations. Journal of Physics D: Applied Physics, 2017, 50: 505101.

[40] H. X. Sun*, Y. L. Huang, J. P. Xia & S. Q. Yuan*. Asymmetric acoustic convergence in a metal plate with binary wave-path slits. Journal of Physics D: Applied Physics, 2017, 50: 35LT02.

[39] Y. J. Guan, H. X. Sun*, J. P. Xia & S. Q. Yuan*. Broadband asymmetric acoustic transmission in a single medium by an array of heat sources. Journal of Physics D: Applied Physics, 2017, 50: 165102.

[38] J. Qian#, J. P. Xia#, H. X. Sun*, S. Q. Yuan*, Y. Ge & X. Z. Yu. Broadband acoustic focusing by cavity structures with phase manipulations. Journal of Applied Physics, 2017, 122: 244501.(Selected as Front Cover)

[37] Y. Ge, H. X. Sun*, S. Q. Yuan* & J. P. Xia. Asymmetric acoustic transmission in an open channel based on multiple scattering mechanism. Applied Physics A, 2017, 123: 328.

[36] J. Qian#, B. Y. Liu#, H. X. Sun*, S. Q. Yuan* & X. Z. Yu. Broadband acoustic focusing by symmetric Airy beams with phased arrays comprised of different numbers of cavity structures. Chinese Physics B, 2017, 26: 114304.

[35] D. Jia, H. X. Sun*, S. Q. Yuan* & Y. Ge. Ultra-broadband asymmetric acoustic transmission with single transmitted beam. Chinese Physics B, 2017, 26: 024302.

[34] 孙宏祥*, 方欣, 葛勇, 任旭东,袁寿其*. 基于蜷曲空间结构的近零折射率声聚焦透镜. 物理学报, 2017, 66: 244301. (Editors' Suggestion)

[33] 刘宸, 孙宏祥*, 袁寿其*, 夏建平,钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66: 154302.

2016

[32] Y. L. Huang, H. X. Sun*, J. P. Xia, S. Q. Yuan* & X. L. Ding. Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms. Applied Physics Letters, 2016, 109: 013501.

[31] Y. Ge, H. X. Sun*, C. Liu, J. Qian, S. Q. Yuan*, J. P. Xia, Y. J. Guan & S. Y. Zhang. Acoustic focusing by an array of heat sources in air. Applied Physics Express, 2016, 9: 066701.

[30] J. P. Xia, H. X. Sun*, Q. Cheng, Z. Xu, H. Chen, S. Q. Yuan*, S. Y. Zhang, Y. Ge & Y. J. Guan. Theoretical and experimental verification of acoustic focusing in metal cylinder structure. Applied Physics Express, 2016, 9: 057301.

[29] H. X. Sun*, S. Y. Zhang*, S. Q. Yuan* & J. P. Xia. Experimental verification of manipulating propagation directions of transmitted waves in asymmetric acoustic transmission. Applied Physics A, 2016, 122: 328.

[28] Y. Ge, H. X. Sun*, S. S. Liu, S. Q. Yuan*, J. P. Xia, Y. J. Guan & S. Y. Zhang. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator. Review of Scientific Instruments, 2016, 87: 1734-1736.

[27] H. X. Sun*, S. Y. Zhang* & S. Q. Yuan. Control of pass-bands in asymmetric acoustic transmission. Chinese Physics B, 2016, 25: 124313. (Invited Paper)

[26] Y. J. Guan, H. X. Sun*, S. S. Liu, S. Q. Yuan*, J. P. Xia & Y. Ge. Acoustic focusing through two layer annuluses in air. Chinese Physics B, 2016, 25: 104302.

[25] Y. J. Guan, H. X. Sun*, S. Q. Yuan, S. Y. Zhang & Y. Ge. Laser-generated Rayleigh waves propagating in transparent viscoelastic adhesive coating/metal substrate systems. International Journal of Thermophysics, 2016, 37: 101.

[24] H. X. Sun*, S. Y. Zhang, S. Q. Yuan, Y. J. Guan & Y. Ge. Laser-generated Lamb waves propagation in multilayered plates composed of viscoelastic fiber-reinforced composite materials. International Journal of Thermophysics, 2016, 37: 68.

[23] 刘宸, 孙宏祥*, 袁寿其*,夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65: 044303.

[22] 管义钧, 孙宏祥*, 袁寿其*, 葛勇,夏建平. 近表面层黏性模量梯度变化的复合平板中激光热弹激发声表面波的传播特性. 物理学报, 2016, 65: 224201.

[21] 管义钧, 孙宏祥*, 袁寿其, 张淑仪,葛勇. 黏弹性胶粘涂层-基底结构中激光激发类瑞利波的传播特性. 声学学报,2016, 41: 575-584.

2015

[20] J. P. Xia & H. X. Sun*. Acoustic focusing by metal circular ring structure. Applied Physics Letters, 2015, 106: 063505.

[19] H. X. Sun*, S. Q. Yuan* & S. Y. Zhang, Asymmetric acoustic transmission in multiple frequency bands. Applied Physics Letters, 2015, 107: 213505.

[18] J. P. Xia, H. X. Sun*, S. Q. Yuan* & S. Y. Zhang. Extraordinary acoustic transmission based on source pattern enhancement and reconstruction by metal cylinder structure. Applied Physics Express, 2015, 8: 104301.

[17] H. X. Sun* & S. Y. Zhang*. Laser-generated leaky Rayleigh waves at fluid-coating- substrate interfaces. International Journal of Thermophysics, 2015, 36: 1244-1251.

[16] H. X. Sun*, S. Y. Zhang* & J. P. Xia. Propagation characteristics of laser-generated Rayleigh waves in coating-substrate structures with anisotropic and viscoelastic properties. International Journal of Thermophysics, 2015, 36: 1156–1163.

2009-2014

[15] H. X. Sun & S. Y. Zhang*. Enhancement of asymmetric acoustic transmission. Applied Physics Letters, 2013, 102: 113511.

[14] H. X. Sun & S. Y. Zhang*. Thermoviscoelastic excitation and propagation of Rayleigh waves in viscoelastic plates by a pulsed laser. International Journal of Thermophysics, 2013, 34: 1762–1768.

[13] H. X. Sun* & S. Y. Zhang. Influences of elastic and viscous moduli on laser- generated Lamb waves in viscoelastic plates. International Journal of Thermophysics, 2013, 34: 1769–1776.

[12] 孙宏祥,张淑仪*. 激光激发瑞利波检测表面倾斜缺陷的研究. 声学学报,2013, 38: 405-413.

[11] H. X. Sun, S. Y. Zhang* & X. J. Shui. A tunable acoustic diode made by a metal plate with periodical structure. Applied Physics Letters, 2012, 100(11): 103507.

[10] H. X. Sun, S. Y. Zhang* & B. Q. Xu. Influence of viscoelastic property on laser- generated surface acoustic waves in coating–substrate systems. Journal of Applied Physics, 2011, 109: 073107.

[9] H. X. Sun*, B. Q. Xu, H. Zhang, Q. Gao & S. Y. Zhang. Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates. Chinese Physics B, 2011, 20: 014302.

[8] 孙宏祥, 许伯强,张淑仪*. 声表面波渡越时间法检测黏弹性介质表面凹痕深度的研究. 声学学报,2011, 36: 139-144.

[7] H. X. Sun & S. Y. Zhang*. Thermoviscoelastic finite element modeling of laser-generated ultrasound in viscoelastic plates. Journal of Applied Physics, 2010, 108: 123101.

[6] H. X. Sun, B. Q. Xu*, G. D. Xu & C. G. Xu. Study on laser-generated Lamb waves propagation in viscoelastic and anisotropic plate. Chinese Optics Letters, 2010, 8: 776-779.

[5] 孙宏祥,许伯强*. 激光激发Lamb波的有限元时域和频域数值分析. 中国激光, 2010, 37: 537-542.

[4] 孙宏祥, 许伯强*,钱荣祖. 激光声表面波检测黏弹性平板表面裂痕有限元模拟. 江苏大学学报(自然科学版), 2010, 31: 353-357.

[3] H. X. Sun*, B. Q. Xu & R. Z. Qian. Numerical simulation of laser-generated Lamb waves in viscoelastic materials by finite element method. Journal of Applied Physics, 2009, 106: 073108.

[2] 孙宏祥,许伯强*,王纪俊,徐桂东,徐晨光,王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58: 6344-6350.

[1] 孙宏祥,许伯强*,徐晨光,徐桂东,王峰. 横观各向同性材料中激光超声谱有限元数值模拟. 光子学报, 2009, 38: 1041-1046.

授权发明专利:

[5] 钱姣、王垠, 孙宏祥. 一种基于两元相控单元的宽频带亚波长声逻辑门. 专利号:ZL. 201910446273. 1.

[4] 王垠, 孙宏祥, 陆雨静, 孙晔旸, 袁寿其. 一种调频双频带亚波长声信号滤波器件. 专利号:ZL. 202110328080. 3.

[3] 孙宏祥,黄玉磊,袁寿其,夏建平. 一种基于波导管结构的多频带可控声波单向传输器件. 专利号:ZL. 201610335403. 0.

[2] 孙宏祥,袁寿其,夏建平. 一种基于金属板状复合结构的多频带声波非对称透射器件. 专利号:ZL. 201510188907. X.

[1] 孙宏祥,袁寿其,夏建平. 一种方向可控的声增强透射器件. 专利号:ZL. 201510500563.1.

江苏大学计算机科学与通信工程学院 版权所有
Copyright (C) 2018-2023.cs.ujs.edu.cn. All rights resterved
地址:江苏省镇江市京口区学府路301号江苏大学计算机学院 邮编:212013   Tel:0511-88780371 Email:jsj@ujs.edu.cn